PHYSICAL REVIEW E, VOLUME 63, 066401

Beam propagation of x rays in a laser-produced plasma and a modified relation
of interferometry in measuring the electron density
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In this paper, using a quantum mechanical technique and introducing the so\¢a#ipcesentatioriwhere
the representation transformation is made by using the potential Hamiltghiare studied x-ray propagation
in a linear plasma medium both analytically and numerically. A modified relation between the phase of the
probe and the reference light and the electron density of the plasma is derived, in which the contribution of the
gradient of the electron density has been taken into account. It is shown that this relation has the advantage in
measurements of the electron density of a plasma using the x-ray interferometry technique of lessening the
errors originating from the electron density gradient. The validity of x-ray interferometry is discussed in both
mathematical and physical terms.
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Measurement of the laser-plasma electron density plays

an important role in the diagnostics of laser-produced plas\'/vhere the integral is taken along the propagation rauts

mas, and the method of the refractive index of the plasm:{xhe probe beam. Equatio@) is the basis of x-ray interfer-

med|um[1—7]_ IS one of the r_nethods used extensively. Earlyometry for measuring the electron density of a plasma and
work used visible and uv light as the probe and more re;

we will refer to it as the conventional relation in the follow-
cently x-ray sources came to be popular because of the

’ S N o ; |Flg discussion. Thug, can be inferred from a measurement
special characteristics, such@shigh critical density so that of the phase differencAd obtained by interference of the
higher electron density measurements become possible;

N . ; . _probe and reference light. Equati¢®) can be derived theo-
refractive index close to unity and a small diffraction effect; retically from the optical path difference or by the Wentzel-

(iii) a short wavelength which increases the resolution; an‘i’(ramers-Bri|Iouin-Jeffreys(WKBJ) (and hence essentially

(iv) reduction of the high absorption near the critical Surfacegeometrical optical approximation, in which the electron

[3-9]. Further, narrow-bandwidth multilayer optics can be ; T This i lid f f
used so that the detector can avoid being swamped by tﬁgzlgge%r;dﬁgtsﬁ ;g%]g;i?].remsnlts valid for most cases o

spontaneous emission of the plaspeav]. The x-ray probe Although the above relation has been used extensively,

Fhropa?atei_s n tge Co:l's'ﬁ.nfss plasma under measurement,q finds that there are some differences between the experi-
€ refraclive index ot which 1S mental and theoretical results. In this paper, we intend to

1o modify the relation given by Eg2) by taking into account
N=<1— E) 1) the gradient of the electron density. From Maxwell's equa-

Ne tions, together with Eq(1), it can be seen tha - E is pro-

portional toV ne [10] and can generally be ignored; hence we
where n. is the electron density of the plasma. can safely assume that the x-ray probe propagating in a
=1.1x10°'\ " 2cm 3 (with \ in wm) is the critical electron  plasma medium is linearly polarized monochromatic light
density per cubic centimetex,is the wavelength of the x-ray and can be depicted by a paraxial scalar field, i.e.,
probe, and the reference light propagates in free spbice (E(x,y,z)=y(x,y,z)exdi(kz—wt)]. Then the equation for
=1). The difference in optical length between the probe anc-ray beam propagation in a linear plasma medium reads
the reference light idAL= [{(N—1)dz [1,3,8. Application
of the interferometric technique in measuring the electron 0y, Ne
density is based upon the fact that, after passing through the 2"‘5 +Vi ‘/’_n_ck ¥=0, )
plasma, the probe light has a phase differentd
= wAL/c relative to the reference lighsupposing the probe wherek is the wave number of the x-ray probe in vacuum
and reference light are plane waves, then after passingk=w/c=2#/\). Equation(3) is a Schrdinger equation
through the plasma, the reference light field Es(z) with inhomogeneous potential, which has no analytical solu-
=E(0)exptkz), while the probe light field isEy(2) tion, and therefore the relation betweenandA® cannot be
=E(0)expikz+iA®)], andA® is connected to the electron derived explicitly. However, we will show that by applying
densityn, via the relation1] some well-developed technigques of quantum mechanics,
such as the bra and ket depiction, the representation transfor-
mation, etc., a more accurate relation betwegrand A®
*Electronic address: hguo@scnu.edu.cn can be derived.
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The paper is organized as follows. In Sec. Il, we use

guantum mechanical techniques to reinvestigate(Bgand
introduce the so-calle¥ representatiowhere the represen-

tation transformation is made by using the potnetial Hamil-

tonianV) to derive a modified relation betweern andA®.

In Sec. Ill numerical simulations are carried out, and we
compare our results obtained using the modified analytical

results and using the conventional results of &j.to those
obtained from a full numerical calculation based on Bj.
In Sec. IV a discussion and conclusion are given.

II. DERIVATION OF THE MODIFIED RELATION

In the following discussion, the fielg is viewed as a ket
state|#(z)) evolving with the propagation distanae then
Eqg. (3) can be rewritten as

d
i [v(2)=Hlu(2), @

where

2

2 Ne
y H:H0+V, H():_?VL, V:

2 2n.’
Introducing the unitary operatdd, =exp(—ib~f5Vd2 and
transforming the statpy(z)) and physical variabl& in the
Schralinger representation to another representafide-
noted as the/ representation hereafjei.e.,

lyu(2))=Uy Y e(2)), Fy=Uy'FUy, (5)

gives

J
ibEWv(Z»:HOVWV(Z)% (6)
where HOV=U\71HOUV. Equation (6) depicts the “free
space” propagation of the probe in tRerepresentationSee
Fig. 1, showing the reference and probe light propagating i
free space in the Schilinger representation and théerep-
resentation, respective)yOne then derives

|l//v(2)>:TexF<_iblfozHovdZ)Wv(o))y (7)

where T is the time-ordering operatdrll] and T(Hgy)™
=Hov(z1)Hov(Z2) - - -Hov(zm), (21<22<---<z). If VI
#m, one has

[Hov(z),Hov(zn)]=0; (8
thenT=1 and can be removed from E(). Since, in the
discussions within this pape¥/H,~ 10 %<1 and so Eq(8)

is always valid, we will neglect this operator. It can be jus-
tified thatU,/(0)=1, and hencéyx,(0))=|(0)); therefore

z
l4(2))=UyT eXP( - ib_lfo Hovdz) [4(0)). (9
By using the Baker-Hausdorff lemnja1], i.e.,

06640
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expiGn)Aexp—iGn)
12,2

—A+ig[G,A]+ '2—7[6,[G,A]]+ -

in

/i
n!

n

+ [G,[G,[G1A]]]+, (]_(_))

whereA and G are operators ang is a real parameter, and
settingA=H,y,G=[5Vdz »=b"1, one has
2 z R R
+ibf dzv, V-V,
0

1/ (z
HOV:H0+_ f dZVLV
2\ Jo

bz
+i —f dzv2v. (11

2J)o
It should be noted that Eq11) includes the contributions of
all terms mentioned in Eq10) (which is an infinite serigs
whereas all the higher order terms gt (n=3) are equal to
zero due to the commutation reIatio[ri%fV,V]=0.

Next, we evaluate the magnitude of the termaHgf, to
give the solution of ¢(z)). Suppose the propagation length
of the x-ray probe it (thickness of the plasma mediyiand
the probe has the beam widiv, then according to the
Lagrange theorem one has

Hoy Ho VL? = ., . bLs
T’VVJF—ZWZ[VJHV(&J)] +IWV¢
. = . bL
xan(fz,r)-ViﬂW
<{V2InV(&,N+V. V(&1 (12
where & e[0L], i=1,2,3, andéL is the dimensionless

transverse gradient operator. If all of the electron density

rl)radient terms are ignored, then Efj2) gives

Hoy~H,. (13
By connecting Eqs(9) and(13) one derives
|¢(2))~UyUg| (0)), (14

where Ug=exp(—ib 1f3H,d2). Since|y(z))=Ugq|#(0)) is

the field of reference light, then from E@L4) one finds that
the difference between the reference and probe lights lies in
the phase factor

L
UV(L)=exp( —ib_lf0 le).

The phase corresponding to the interference can be derived
as

nedl,
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ADpg—AD
a ! 5 =‘—A‘B 2. 18
Wr(o)) Fiw’(L» AB (ADp)max 18
|
— : Before the numerical simulations, we first give some brief
|
1

analysis for a special case. Suppose the wavelength of the
b x-ray probe is\ =15.5 nm and the electron density distribu-
‘W”( )} plasma .l%‘(L» tion is cylindrically symmetric(the symmetry axis is thg
! axig and has a Gaussian profile, i.e.,

FIG. 1. Schematic setup of the x-ray interferometric technique
to measure the laser-plasma electron density, in which igt¢he N rr?
reference light evolving from|,(0))=|¢(0)) to |y (L)) ne(r)zxex L
=Uo|#(0)) while b is the x-ray probe evolving fron, (0))
=[y(0)) to (L))=U\T exp(—ib~2f3Hnd2)|(0)). “a” and
“b|”¢sho>w th;(/g)rop;gatign ofpreferengeogc:ld| proz)e light in free Wherer=yx“+z andn./A andw, denote the peak value
space in Schidinger andV representation, respectively. and the normalization parameter of the electron density dis-
tribution, respectively. Then Eq&) and (17) yield

which is just Eq.(2) the result obtained under the WKBJ

approximation 1]. ™W, X2 L
Next we consider the lowest order electron density gradi- ADp=———exp — —|er 2wy (19)
ent term, which is described by the second term on the right-
hand side of Eq(11), with the order ofO(L/W?), while the nd
third and fourth terms are @ (L/(kW?))<O(L/W?). From
this point of view, after passing through plasma over the 5 5, 2
distancel, the probe field 4,(L)) becomes | ™Wo X L7\ m VX
P ADPg=—|———exp ——|efl 5 — | +———
AN w3 2wo | AW
L 1/ (1. 2
~ _in—1 - ’
|wp(L)>~exp[ ib fo V+ 5 fOVLVdI ) }dl’ 2
xexp —2—| |, (20)
X Uol(0)), (15 o
while the reference lighty, (L)) becomes where erfk) =27~ Y2 exp(—t?)dtis the error function, and
|#(L))=Uol(0)) (16) wg [ (Lym L2 L\
Ve=z—5erf| =— || 2wpgexp — — | + wL erfl =—
21 2WO 4Wg 2W0

(see Fig. 1 Therefore the modified phase difference can be

derived as
L \/E
- \/EWO erf( VTO E) J

(L 1/ (. 2
Ad=—b 1f Vo f v,vdl’| |di
0 2\ Jo
(17) by iteration. The errors of the CR and MR are shown in Fig.

w L 1 L
- 2cn, fo nedl+4—nc 0 (
] _ - ) 2, Fig. 3, and Fig. 4, while the electric field distribution of
Equation(17) is the modified relation between the electron ihe x-ray probe after passing through the plasma is shown in
density and the phase difference. In the following section, weig 5.

is the characteristic volume. Fdc/wy>3 one hasV,
I 2 ~Lw3/2—0.225v3. In the following simulations, we choose
f Vi”edll) d'} N=15.5nm andwy=1.0mm. Equation(3) is solved by a
split Fourier transform algorithril2] and Eqgs(2) and(17)

0

will carry out some numerical simulations, based on &4, Figure 2 shows a comparison of the errors in the conven-
Eq. (17), and the direct simulation using E@), and make a  tjonal and modified relations, wherd=100.0 andL/w,
comparison among them. =10. From this one finds thdt) there are five zerosx(w,
=0,+0.4, and*+ ) for curveb but two (x/wy=0 and = x)
I1l. NUMERICAL SIMULATIONS for curve a; and (i) x;/wyg=0 is the point where

For the sake of clarity we will denote the phases evaluated - Ne(x1) =0, which is the same as the casergf=const;
by Egs.(2), (17), and(3) asAd,, Adg, andAd, respec- (i) Xxp/wo==0.4 is the point where V,ne(xy)
tively. Here Eq.(2) is referred to as the conventional relation =[V | Ng(X) Imax, @nd a(X2) =[ 0a(X2) Imax, While 8g(X5)
(CR), Eqg.(17) as the modified relatiofMR), and Eq.(3) as  turns out to be zerdjv) x3/wy= % is the point where the
the experimental relatiofER). The errors of the CR and MR plasma is very dilute. Figure 3 is similar to Fig. 2 except that
relative to the ER are defined as ne is assumed to take a third-order super-Gaussian profile,
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FIG. 2. Comparison of the errors due to the conventional and FIG. 4. Comparison of the maximum errors due to the conven-
modified formulas whem, is a Gaussian profile and=100.0, tional and modified formulas whem, is a Gaussian profile andl
L/w,=10. Curvesa and b denote the dependence 6f and &g =100.0, with differentL/w,. Curvesa and b denote the depen-
(X 10) on the normalized transverse coordinater, respectively. dence of§, anddg (X5) on the normalized longitudinal coordinate
It can be seen that) there is no error for eithes, or 55 at the  L/Wo, respectively. The figure indicates th@t (Sg)max<(Sa)max;
origin; (i) when 8, takes its maximum valuéwhich is also the and(ii) (Jg)max varies more rapidly thanda) max With L/wo.

point for V. n to take its maximum valyei.e., x/Wo~0.4,55  hence the contribution due to the divergence of the field can
=0. be ignored.

From the above simulations, one finds the followifig.
i.e., Ne(X,2) =N exp{— [+ AMEEYA, LIw,=5, and the  The errors in the conventional relation are mainly owing to

maximum point of the electron density gradientxisvg~  the contribution of the electron density gradient, i%, n,,
+0.5, wheredg vanishes. and will take the maximum value when the electron density

Figure 4 shows a comparison of the maximum errors ingradient is maximum(ii) The MR proposed in this paper can
the conventional and modified relations whenis Gaussian overcome the errors due to the electron density gradient and,
profile and A=100.0, with different propagation lengths in particular, the errors from the MR vanish when the elec-
L/w,. Curvesa and b denote the dependence éf and tron density gradient takes its maximum val(i&.) For the
8g(%5) on the normalized longitudinal coordindtéw,, re-  zero point of the gradient of the electron density and the very
spectively. The figure indicates th@t (5g) max<(In)max; @nd  dilute plasma case, both methods are accurate. The CR is
(i) (8g)max varies more rapidly thandy) max With L/wj. good enough and can in fact simplify the evaluatiom)

Figure 5 shows the intensity distribution of the x-ray Normally for the underdense plasma it can be shown that
probe after passing through the plasma. The electron density. ExV | n,; therefore the electron density gradient plays an
has a Gaussian profilé/w,=5, and curves, b, ¢, andd  important role so far as the validity of E¢B) and hence of
denote the cases &=100.0, 200.0, 1000.0, and 10000.0, the x-ray interferometry is concerned.
respectively. It is evident thdt) the tendency of the varia-
tion of the curves is similar and they have an intersection IV. DISCUSSION AND CONCLUSION

point (x;) that gives the maximum value of the divergence From the analytical investigations mentioned above, one

of the field, i.e.,V-E(x;) =[V-E(X)]max; (ii) for the dilute a1 derive the conditions for validity of x-ray interferometry.
plasma case, i.e., wheXis large, the field varies slowly and

1.02
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FIG. 5. Intensity distribution of the x-ray probe after passing

FIG. 3. Comparison of the errors due to the conventional andhrough the plasma. The electron density has a Gaussian profile,
modified formulas whem, is a third-order super-Gaussian profile, | /w,=5, curves a, b, ¢, and d denote the cases ofA
i.e., Ne(x,2)=ncexg{—[7 (C+Z)WGI}/A, where A=100.0 and  =100.0, 200.0, 1000.0, and 10 000.0, respectively. It is evident that
L/wo=5. Curvea and b denote the dependence 6f and &g (i) the tendency of the variation of the curves is similar and they
(X 5) on the normalized transverse coordinete,, respectively. It have two points of intersection which give the biggest gradient of
can be seen thdl) there is no error for eithef, or §g at the origin;  the field; (ii) for a dilute plasma, i.e.A is large, the field varies
(i) when 6, takes its maximum valuéwhich is also the point for  slowly and hence the contribution due to the gradient of the field
Vlne to take its maximum valyei.e., x/wy=0.5, 553=0. can be ignored.
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First, the electron density gradient should be, on the ond

0
hand, sufficiently small so that - E can be ignored, and, on | 2% AT & Mr__|%®
the other hand sufficiently large so that the contribution to
the errors of the CR is significant, which is the very basic
requirement of interferometry. Secondly, a further relation
can be derived for the validity of the interferometric tech-
nigue for the CR which, in the following discussions, ap-
pears to be the connection between the CR and MR. Fron
the equations governing the probe light propagation in
plasma and the reference ligitt propagation in free space
(see Fig. 1, i.e.,

AT Ad, = Ady, — &D

2

FIG. 6. Procedure for deriving a more precise value of the elec-

z'kﬁ"’_vi $:=0, tron density based on Abel's transformation, together with the
modified relation derived in this paper, in which MT means the
Yy ) Ne modified termé® and AT means Abel’s transformation.
2|ka—+vl¢p——k2<//p=o, (21) ) 0. _ -
z Ne then(ii) putng into the MR to derive a modified value of the

_ 0
wherey, and i, are connected by, = i, exp(Adg) (Ad, phaseA®mog=ADo+ IP(ne), where

is the phase corresponding to the interference of the two w (L) (1. 2
lights and has been used to compare the errors in this paper 5q>(ng)= - f ( J' vV, ndI ’) dl.
2 e
one comes to Cne
dAD, ngk Finally (iii) use the AT on the new phageb,,,q4to derive a
7 T % (22)  new electron density, i.en,=.A{A®.4; then a more pre-
cise value of the electron density can be derived. It should be
or equivalently pointed out that the iteration should be done continuously

until stability of the electron density is attained.

It should also be noted that, besides the merit of reducing
the errors by taking into account the modified terms that we
have derived and analyzed within the paper, the method we
It can be found from Eq<22) and (23) (the conditions for presented also implies that the measurement can be done for
the validity of interferometry meteorologicajlyhat(i) math-  any paraxial beam for both reference and probe light, while
ematically, the phase operator gxpP,]=U, can be used as the conventional method requires that the light should be
a unitary operator for the representation transformatiph; plane wave.
after the transformation the propagation of the x-ray probe in In summary, by using a quantum mechanical technique
the plasma can be treated as a “free space” propagation arehd introducing the/ representation, we have studied x-ray
only the free Hamiltonian in the representatidg, needs to  propagation in a linear plasma medium both analytically and
be considered to evaluate the evolution of light. numerically. A modified relation between the phase corre-

Numerical simulations show that the MR presented in thissponding to the interference of the probe and reference light
paper gives rise to a great reduction of the errors originatingind the laser-plasma electron density is derived. Comparison
from the electron density gradient compared with the CR. Irof the modified relation with the conventional one is made
particular, when the electron density gradient takes its maxiand shows its merit of reducing the errors by considering the
mum value the error of the MR vanishes while that of the CRcontribution of the gradient of the electron density.
is a maximum. Hence this method can be used to measure
the laser-plasma electron density in a more precise way. A ACKNOWLEDGMENTS
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