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Beam propagation of x rays in a laser-produced plasma and a modified relation
of interferometry in measuring the electron density

Hong Guo,* Timon Chengyi Liu, Xiquan Fu, Wei Hu, and Song Yu
Laboratory of Light Transmission Optics, South China Normal University, Guangzhou 510631, People’s Republic of China
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In this paper, using a quantum mechanical technique and introducing the so-calledV representation~where
the representation transformation is made by using the potential HamiltonianV!, we studied x-ray propagation
in a linear plasma medium both analytically and numerically. A modified relation between the phase of the
probe and the reference light and the electron density of the plasma is derived, in which the contribution of the
gradient of the electron density has been taken into account. It is shown that this relation has the advantage in
measurements of the electron density of a plasma using the x-ray interferometry technique of lessening the
errors originating from the electron density gradient. The validity of x-ray interferometry is discussed in both
mathematical and physical terms.
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I. INTRODUCTION

Measurement of the laser-plasma electron density p
an important role in the diagnostics of laser-produced p
mas, and the method of the refractive index of the plas
medium@1–7# is one of the methods used extensively. Ea
work used visible and uv light as the probe and more
cently x-ray sources came to be popular because of t
special characteristics, such as~i! high critical density so tha
higher electron density measurements become possible;~ii ! a
refractive index close to unity and a small diffraction effe
~iii ! a short wavelength which increases the resolution;
~iv! reduction of the high absorption near the critical surfa
@3–9#. Further, narrow-bandwidth multilayer optics can
used so that the detector can avoid being swamped by
spontaneous emission of the plasma@6,7#. The x-ray probe
propagates in the collisionless plasma under measurem
the refractive index of which is

N5S 12
ne

nc
D 1/2

, ~1!

where ne is the electron density of the plasma,nc
51.131021l22 cm23 ~with l in mm) is the critical electron
density per cubic centimeter,l is the wavelength of the x-ray
probe, and the reference light propagates in free spaceN
51). The difference in optical length between the probe a
the reference light isDL5*0

z(N21)dz @1,3,8#. Application
of the interferometric technique in measuring the elect
density is based upon the fact that, after passing through
plasma, the probe light has a phase differenceDF
5vDL/c relative to the reference light@supposing the probe
and reference light are plane waves, then after pas
through the plasma, the reference light field isEr(z)
5E(0)exp(ikz), while the probe light field is Ep(z)
5E(0)exp(ikz1iDF)#, andDF is connected to the electro
densityne via the relation@1#
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nedl, ~2!

where the integral is taken along the propagation routeL of
the probe beam. Equation~2! is the basis of x-ray interfer-
ometry for measuring the electron density of a plasma
we will refer to it as the conventional relation in the follow
ing discussion. Thusne can be inferred from a measureme
of the phase differenceDF obtained by interference of th
probe and reference light. Equation~2! can be derived theo
retically from the optical path difference or by the Wentze
Kramers-Brillouin-Jeffreys~WKBJ! ~and hence essentiall
geometrical optical! approximation, in which the electron
density gradient is ignored. This is valid for most cases
underdense plasma measurement.

Although the above relation has been used extensiv
one finds that there are some differences between the ex
mental and theoretical results. In this paper, we intend
modify the relation given by Eq.~2! by taking into account
the gradient of the electron density. From Maxwell’s equ
tions, together with Eq.~1!, it can be seen that¹W •EW is pro-
portional to¹W ne @10# and can generally be ignored; hence w
can safely assume that the x-ray probe propagating i
plasma medium is linearly polarized monochromatic lig
and can be depicted by a paraxial scalar field, i
E(x,y,z)5c(x,y,z)exp@i(kz2vt)#. Then the equation for
x-ray beam propagation in a linear plasma medium read

2ik
]c

]z
1¹'

2 c2
ne

nc
k2c50, ~3!

wherek is the wave number of the x-ray probe in vacuu
(k5v/c52p/l). Equation ~3! is a Schro¨dinger equation
with inhomogeneous potential, which has no analytical so
tion, and therefore the relation betweenne andDF cannot be
derived explicitly. However, we will show that by applyin
some well-developed techniques of quantum mechan
such as the bra and ket depiction, the representation tran
mation, etc., a more accurate relation betweenne and DF
can be derived.
©2001 The American Physical Society01-1
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The paper is organized as follows. In Sec. II, we u
quantum mechanical techniques to reinvestigate Eq.~3! and
introduce the so-calledV representation~where the represen
tation transformation is made by using the potnetial Ham
tonianV! to derive a modified relation betweenne andDF.
In Sec. III numerical simulations are carried out, and
compare our results obtained using the modified analyt
results and using the conventional results of Eq.~2! to those
obtained from a full numerical calculation based on Eq.~3!.
In Sec. IV a discussion and conclusion are given.

II. DERIVATION OF THE MODIFIED RELATION

In the following discussion, the fieldc is viewed as a ket
stateuc(z)& evolving with the propagation distancez; then
Eq. ~3! can be rewritten as

ib
]

]z
uc~z!&5Huc~z!&, ~4!

where

b5k215
l

2p
, H5H01V, H052

b2

2
¹'

2 , V5
ne

2nc
.

Introducing the unitary operatorUV5exp(2ib21*0
zVdz) and

transforming the stateuc(z)& and physical variableF in the
Schrödinger representation to another representation~de-
noted as theV representation hereafter!, i.e.,

ucV~z!&5UV
21uc~z!&, FV5UV

21FUV , ~5!

gives

ib
]

]z
ucV~z!&5H0VucV~z!&, ~6!

where H0V5UV
21H0UV . Equation ~6! depicts the ‘‘free

space’’ propagation of the probe in theV representation.~See
Fig. 1, showing the reference and probe light propagating
free space in the Schro¨dinger representation and theV rep-
resentation, respectively.! One then derives

ucV~z!&5T expS 2 ib21E
0

z

H0VdzD ucV~0!&, ~7!

where T is the time-ordering operator@11# and T(H0N)m

5H0V(z1)H0V(z2)•••H0V(zm), (z1,z2,•••,zm). If ; l
Þm, one has

@H0V~zl !,H0V~zm!#50; ~8!

then T51 and can be removed from Eq.~7!. Since, in the
discussions within this paper,V/H0;1024!1 and so Eq.~8!
is always valid, we will neglect this operator. It can be ju
tified thatUV(0)51, and henceucV(0)&5uc(0)&; therefore

uc~z!&5UVT expS 2 ib21E
0

z

H0VdzD uc~0!&. ~9!

By using the Baker-Hausdorff lemma@11#, i.e.,
06640
e

-

al

in

-

exp~ iGh!A exp~2 iGh!

5A1 ih@G,A#1
i 2h2

2!
†G,@G,A#‡1•••

1
i nhn

n!
@G,†G,•••@G,A#•••‡#1•••, ~10!

whereA andG are operators andh is a real parameter, an
settingA5H0 ,G5*0

zVdz,h5b21, one has

H0V5H01
1

2 S E
0

z

dz¹W 'VD 2

1 ibE
0

z

dz¹W 'V•¹W '

1 i
b

2E0

z

dz¹'
2 V. ~11!

It should be noted that Eq.~11! includes the contributions o
all terms mentioned in Eq.~10! ~which is an infinite series!
whereas all the higher order terms ofhn (n>3) are equal to
zero due to the commutation relations@¹'

2 V,V#50.
Next, we evaluate the magnitude of the terms ofH0V to

give the solution ofuc(z)&. Suppose the propagation leng
of the x-ray probe isL ~thickness of the plasma medium! and
the probe has the beam widthW, then according to the
Lagrange theorem one has

H0V

V
;

H0

V
1

VL2

2W2
@¹̃W 'ln V~j1 ,rW !#21 i

bL

W2
¹̃W '

3 ln V~j2 ,rW !•¹̃W '1 i
bL

2W2

3$¹̃'
2 ln V~j3 ,rW !1@¹̃W 'ln V~j3 ,rW !#2%, ~12!

where j iP@0,L#, i 51,2,3, and ¹̃W ' is the dimensionless
transverse gradient operator. If all of the electron dens
gradient terms are ignored, then Eq.~12! gives

H0V'H0 . ~13!

By connecting Eqs.~9! and ~13! one derives

uc~z!&'UVU0uc~0!&, ~14!

where U05exp(2ib21*0
zH0dz). Since uc(z)&5U0uc(0)& is

the field of reference light, then from Eq.~14! one finds that
the difference between the reference and probe lights lie
the phase factor

UV~L !5expS 2 ib21E
0

L

VdlD .

The phase corresponding to the interference can be der
as

DF52
v

2cnc
E

0

L

nedl,
1-2
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which is just Eq.~2! the result obtained under the WKB
approximation@1#.

Next we consider the lowest order electron density gra
ent term, which is described by the second term on the rig
hand side of Eq.~11!, with the order ofO(L/W2), while the
third and fourth terms are ofO„L/(kW2)…!O(L/W2). From
this point of view, after passing through plasma over
distanceL, the probe fielducp(L)& becomes

ucp~L !&'expH 2 ib21E
0

LFV1
1

2 S E
0

l

¹W 'Vdl8D 2GdlJ
3U0uc~0!&, ~15!

while the reference lightuc r(L)& becomes

uc r~L !&5U0uc~0!& ~16!

~see Fig. 1!. Therefore the modified phase difference can
derived as

DF52b21E
0

LFV1
1

2 S E
0

l

¹W 'Vdl8D 2Gdl

52
v

2cnc
F E

0

L

nedl1
1

4nc
E

0

LS E
0

l

¹W 'nedl8D 2

dlG .
~17!

Equation~17! is the modified relation between the electr
density and the phase difference. In the following section,
will carry out some numerical simulations, based on Eq.~2!,
Eq. ~17!, and the direct simulation using Eq.~3!, and make a
comparison among them.

III. NUMERICAL SIMULATIONS

For the sake of clarity we will denote the phases evalua
by Eqs.~2!, ~17!, and~3! asDFA , DFB , andDF0, respec-
tively. Here Eq.~2! is referred to as the conventional relatio
~CR!, Eq. ~17! as the modified relation~MR!, and Eq.~3! as
the experimental relation~ER!. The errors of the CR and MR
relative to the ER are defined as

FIG. 1. Schematic setup of the x-ray interferometric techniq
to measure the laser-plasma electron density, in which routea is the
reference light evolving from uc r(0)&5uc(0)& to uc r(L)&
5U0uc(0)& while b is the x-ray probe evolving fromucp (0)&
5uc(0)& to ucp(L)&5UVT exp(2ib21*0

zH0Vdz)uc(0)&. ‘‘a’’ and
‘‘b’’ show the propagation of reference and probe light in fr
space in Schro¨dinger andV representation, respectively.
06640
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dA,B5UDFA,B2DF0

~DF0!max
U. ~18!

Before the numerical simulations, we first give some br
analysis for a special case. Suppose the wavelength of
x-ray probe isl515.5 nm and the electron density distrib
tion is cylindrically symmetric~the symmetry axis is they
axis! and has a Gaussian profile, i.e.,

ne~r !5
nc

A
expS 2

pr 2

w0
2 D ,

wherer 5Ax21z2 and nc /A and w0 denote the peak value
and the normalization parameter of the electron density
tribution, respectively. Then Eqs.~2! and ~17! yield

DFA52
pw0

Al
expS 2

px2

w0
2 D erfS LAp

2w0
D ~19!

and

DFB52Fpw0

Al
expS 2

px2

w0
2 D erfS LAp

2w0
D 1

p3Vcx
2

A2lw0
4

3expS 22
px2

w0
2 D G , ~20!

where erf(x)52p21/2*0
x exp(2t2)dt is the error function, and

Vc5
w0

2

2p H erf S LAp

2w0
D F2w0 expS 2

L2p

4w0
2D 1pL erfS LAp

2w0
D G

2A2w0 erfS L

w0
Ap

2 D J
is the characteristic volume. ForL/w0.3 one hasVc

'Lw0
2/220.225w0

3. In the following simulations, we choos
l515.5 nm andw051.0 mm. Equation~3! is solved by a
split Fourier transform algorithm@12# and Eqs.~2! and ~17!
by iteration. The errors of the CR and MR are shown in F
2, Fig. 3, and Fig. 4, while the electric field distribution o
the x-ray probe after passing through the plasma is show
Fig. 5.

Figure 2 shows a comparison of the errors in the conv
tional and modified relations, whereA5100.0 andL/w0
510. From this one finds that~i! there are five zeros (x/w0
50,60.4, and6`) for curveb but two (x/w050 and6`)
for curve a; and ~ii ! x1 /w050 is the point where
¹W 'ne(x1)50W , which is the same as the case ofne5const;
~iii ! x2 /w0560.4 is the point where ¹W 'ne(x2)
5@¹W 'ne(x)#max, and dA(x2)5@dA(x2)#max, while dB(x2)
turns out to be zero;~iv! x3 /w056` is the point where the
plasma is very dilute. Figure 3 is similar to Fig. 2 except th
ne is assumed to take a third-order super-Gaussian pro

e

1-3
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i.e., ne(x,z)5nc exp$2@p(x21z2)/w0
2#3%/A, L/w055, and the

maximum point of the electron density gradient isx/w0'
60.5, wheredB vanishes.

Figure 4 shows a comparison of the maximum errors
the conventional and modified relations whenne is Gaussian
profile and A5100.0, with different propagation length
L/w0. Curvesa and b denote the dependence ofdA and
dB(35) on the normalized longitudinal coordinateL/w0, re-
spectively. The figure indicates that~i! (dB)max!(dA)max; and
~ii ! (dB)max varies more rapidly than (dA)max with L/w0.

Figure 5 shows the intensity distribution of the x-ra
probe after passing through the plasma. The electron den
has a Gaussian profile,L/w055, and curvesa, b, c, andd
denote the cases ofA5100.0, 200.0, 1000.0, and 10 000.
respectively. It is evident that~i! the tendency of the varia
tion of the curves is similar and they have an intersect
point (x1) that gives the maximum value of the divergen
of the field, i.e.,¹W •EW (x1)5@¹W •EW (x)#max; ~ii ! for the dilute
plasma case, i.e., whenA is large, the field varies slowly an

FIG. 3. Comparison of the errors due to the conventional
modified formulas whenne is a third-order super-Gaussian profil
i.e., ne(x,z)5nc exp$2@p (x21z2)/w0

2#3%/A, where A5100.0 and
L/w055. Curve a and b denote the dependence ofdA and dB

(35) on the normalized transverse coordinatex/w0, respectively. It
can be seen that~i! there is no error for eitherdA or dB at the origin;
~ii ! whendA takes its maximum value~which is also the point for

¹W 'ne to take its maximum value!, i.e., x/w0'0.5, dB50.

FIG. 2. Comparison of the errors due to the conventional
modified formulas whenne is a Gaussian profile andA5100.0,
L/w0510. Curvesa and b denote the dependence ofdA and dB

(310) on the normalized transverse coordinatex/w0, respectively.
It can be seen that~i! there is no error for eitherdA or dB at the
origin; ~ii ! when dA takes its maximum value~which is also the

point for ¹W 'ne to take its maximum value!, i.e., x/w0'0.4, dB

50.
06640
n

ity

n

hence the contribution due to the divergence of the field
be ignored.

From the above simulations, one finds the following.~i!
The errors in the conventional relation are mainly owing
the contribution of the electron density gradient, i.e.,¹W 'ne ,
and will take the maximum value when the electron dens
gradient is maximum.~ii ! The MR proposed in this paper ca
overcome the errors due to the electron density gradient
in particular, the errors from the MR vanish when the ele
tron density gradient takes its maximum value.~iii ! For the
zero point of the gradient of the electron density and the v
dilute plasma case, both methods are accurate. The C
good enough and can in fact simplify the evaluation.~iv!
Normally for the underdense plasma it can be shown t
¹W •EW }¹W 'ne ; therefore the electron density gradient plays
important role so far as the validity of Eq.~3! and hence of
the x-ray interferometry is concerned.

IV. DISCUSSION AND CONCLUSION

From the analytical investigations mentioned above, o
can derive the conditions for validity of x-ray interferometr

d

d FIG. 4. Comparison of the maximum errors due to the conv
tional and modified formulas whenne is a Gaussian profile andA
5100.0, with differentL/w0. Curvesa and b denote the depen
dence ofdA anddB (35) on the normalized longitudinal coordinat
L/w0, respectively. The figure indicates that~i! (dB)max!(dA)max;
and ~ii ! (dB)max varies more rapidly than (dA)max with L/w0.

FIG. 5. Intensity distribution of the x-ray probe after passi
through the plasma. The electron density has a Gaussian pr
L/w055, curves a, b, c, and d denote the cases ofA
5100.0, 200.0, 1000.0, and 10 000.0, respectively. It is evident
~i! the tendency of the variation of the curves is similar and th
have two points of intersection which give the biggest gradient
the field; ~ii ! for a dilute plasma, i.e.,A is large, the field varies
slowly and hence the contribution due to the gradient of the fi
can be ignored.
1-4
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First, the electron density gradient should be, on the
hand, sufficiently small so that¹W •EW can be ignored, and, o
the other hand sufficiently large so that the contribution
the errors of the CR is significant, which is the very ba
requirement of interferometry. Secondly, a further relat
can be derived for the validity of the interferometric tec
nique for the CR which, in the following discussions, a
pears to be the connection between the CR and MR. F
the equations governing the probe lightcp propagation in
plasma and the reference lightc r propagation in free spac
~see Fig. 1!, i.e.,

2ik
]c r

]z
1¹'

2 c r50,

2ik
]cp

]z
1¹'

2 cp2
ne

nc
k2cp50, ~21!

wherec r andcp are connected bycp5c r exp(iDF0) (DF0
is the phase corresponding to the interference of the
lights and has been used to compare the errors in this pa!,
one comes to

2
]DF0

]z
1

nek

nc
50, ~22!

or equivalently

DF0~z!52b21E
0

z

Vdz. ~23!

It can be found from Eqs.~22! and ~23! ~the conditions for
the validity of interferometry meteorologically! that~i! math-
ematically, the phase operator exp@iDF0#5UV can be used as
a unitary operator for the representation transformation;~ii !
after the transformation the propagation of the x-ray probe
the plasma can be treated as a ‘‘free space’’ propagation
only the free Hamiltonian in the representationH0V needs to
be considered to evaluate the evolution of light.

Numerical simulations show that the MR presented in t
paper gives rise to a great reduction of the errors origina
from the electron density gradient compared with the CR
particular, when the electron density gradient takes its m
mum value the error of the MR vanishes while that of the C
is a maximum. Hence this method can be used to mea
the laser-plasma electron density in a more precise way
schematic procedure for an algorithm using the Able tra
formation @1#, i.e.,

ne~r !5A$DF%52
2cnc

pv E
r

L/2dDF

dx

dx

~x22r 2!1/2
, ~24!

whereA denotes the Abel transformation, together with t
MR realized by the iteration algorithm, to derive the electr
density in a more precise way is shown in Fig. 6, in whi
MT means the modified termdF and AT means Abel’s
transformation. The basic idea of the procedure is as follo
~i! Derive a coarse value of the electron density from
measured phaseDF0 based on the AT, i.e.,ne

05A$DF0%;
06640
e
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then~ii ! put ne
0 into the MR to derive a modified value of th

phaseDFmod5DF01dF(ne
0), where

dF~ne
0!52

v

8cnc
2E0

LS E
0

l

¹W 'ne
0dl8D 2

dl.

Finally ~iii ! use the AT on the new phaseDFmod to derive a
new electron density, i.e.,ne85A$DFmod%; then a more pre-
cise value of the electron density can be derived. It should
pointed out that the iteration should be done continuou
until stability of the electron density is attained.

It should also be noted that, besides the merit of reduc
the errors by taking into account the modified terms that
have derived and analyzed within the paper, the method
presented also implies that the measurement can be don
any paraxial beam for both reference and probe light, wh
the conventional method requires that the light should
plane wave.

In summary, by using a quantum mechanical techniq
and introducing theV representation, we have studied x-ra
propagation in a linear plasma medium both analytically a
numerically. A modified relation between the phase cor
sponding to the interference of the probe and reference l
and the laser-plasma electron density is derived. Compar
of the modified relation with the conventional one is ma
and shows its merit of reducing the errors by considering
contribution of the gradient of the electron density.
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FIG. 6. Procedure for deriving a more precise value of the e
tron density based on Abel’s transformation, together with
modified relation derived in this paper, in which MT means t
modified termdF and AT means Abel’s transformation.
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